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We investigate the particle and kinetic-energy densities for a system of N fermions bound in a local �mean-
field� potential V�r�. We generalize a recently developed semiclassical theory �J. Roccia and M. Brack, Phys.
Rev. Lett. 100, 200408 �2008�� in which the densities are calculated in terms of the closed orbits of the
corresponding classical system to D�1 dimensions. We regularize the semiclassical results �i� for the U�1�
symmetry breaking occurring for spherical systems at r=0 and �ii� near the classical turning points where the
Friedel oscillations are predominant and well reproduced by the shortest orbit going from r to the closest
turning point and back. For systems with spherical symmetry, we show that there exist two types of oscillations
which can be attributed to radial and nonradial orbits, respectively. The semiclassical theory is tested against
exact quantum-mechanical calculations for a variety of model potentials. We find a very good overall numeri-
cal agreement between semiclassical and exact numerical densities even for moderate particle numbers N.
Using a “local virial theorem,” shown to be valid �except for a small region around the classical turning points�
for arbitrary local potentials, we can prove that the Thomas-Fermi functional �TF��� reproduces the oscillations
in the quantum-mechanical densities to first order in the oscillating parts.
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I. INTRODUCTION

Recent experimental success confining fermion gases in
magnetic traps �1� has led to renewed interest in theoretical
studies of confined degenerate fermion systems at zero
�2–11� and finite temperatures �12,13�. According to the
density-functional theory �DFT� �14–16�, the local particle
density ��r� is the key ingredient of a system of interacting
fermions in that it contains all information about its ground
state. In this paper, we study the oscillations in the particle
density ��r� and in different forms of the kinetic-energy den-
sity of N fermions bound in a local potential V�r�. Although
we treat the particles as noninteracting, we keep in mind that
this potential models the self-consistent Kohn-Sham �KS�
potential obtained for an interacting system in the mean-field
approximation. We shall also consider potentials with infi-
nitely steep walls, so-called “billiards,” which have been
shown to be good approximations to the self-consistent mean
fields of quantum dots �17� or metal clusters �18� with many
particles.

A semiclassical theory for spatial density oscillations has
been developed recently in �19�. Using Gutzwiller’s semi-
classical Green’s function �20�, expressions for the oscillat-
ing parts of spatial densities of fermionic systems were given
in terms of the closed orbits of the corresponding classical
system. The semiclassical theory was shown in �19� to repro-
duce very accurately the quantum oscillations in the spatial
densities of one-dimensional systems, even for moderate par-
ticle numbers N, and some general results have also been
given for arbitrary higher-dimensional spherical potentials
V�r�.

In this paper, we present in more detail the semiclassical
closed-orbit theory developed in �19� and apply it explicitly
for a variety of potentials in D�1 dimensions. We find over-
all a good agreement between the quantum-mechanical and
the semiclassical densities.

The paper is organized as follows. In Sec. II, we give the
basic definitions of the quantum-mechanical spatial densities.
In Sec. II B, we discuss the asymptotic �extended� Thomas-

Fermi �TF� limits for N→� and emphasize the existence of
two types of density oscillations occurring in potentials for
D�1 with spherical symmetry �except for isotropic har-
monic oscillators�.

Section III is devoted to the semiclassical closed-orbit
theory for spatial density oscillations. In Secs. III A–III D,
we review the basic equations and former results, including
also details that were not presented in �19�. In Secs. III E and
III F, we extend the semiclassical theory to higher-
dimensional systems �D�1� and test its results for various
model potentials against exact quantum-mechanical densi-
ties. In Sect. III E 3, we discuss the regularization necessary
in spherical systems for D�1 near the center �r=0�, where a
U�1� symmetry breaking occurs for r�0. In a separate pub-
lication �21�, we have presented the analytical determination
and classification of all closed orbits in the two-dimensional
circular billiard and give analytical results of the semiclassi-
cal theory for the spatial density oscillations in this system.
Some of the numerical results for the densities are included
in Sec. III E 4 of the present paper.

In Sec. IV, we present regularizations of the spatial den-
sities near the classical turning points, where the semiclassi-
cal theory diverges, both for smooth potentials and for bil-
liard systems. Section V contains some general results valid
for finite fermion systems such as trapped fermionic gases or
metallic clusters. We discuss there, in particular, a “local
virial theorem” and, as its direct consequence, the extended
validity of the TF functional �TF���.

Throughout this paper, we only treat the zero-temperature
ground state of an N-particle system. In the Appendix, we
outline how to include finite temperatures for grand-
canonical ensembles in the semiclassical theory.

II. QUANTUM-MECHANICAL DENSITIES

A. Basic definitions and ingredients

Let us recall some basic quantum-mechanical definitions
using the same notation as in �10�. We start from the station-
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ary Schrödinger equation for particles with mass m, bound
by a local potential V�r� with a discrete energy spectrum
�En�,

�−
�2

2m
�2 + V�r���n�r� = En�n�r� . �1�

We order the spectrum and choose the energy scale such that
0�E1	E2	 . . .	En	 . . .. We consider a system with an
even number N of fermions with spin s=1 /2 filling the low-
est levels and define the particle density by

��r� ª 2 	
En	



�n�r�
2, � ��r�dDr = N . �2�

Hereby, 
 is the Fermi energy and the factor 2 accounts for
the fact that due to spin and time-reversal symmetry, each
state n is at least twofold degenerate. Further degeneracies,
which may arise for D�1, will not be spelled out but in-
cluded in the summations over n. For the kinetic-energy den-
sity, we consider two different definitions �22�:

��r� ª −
�2

2m
2 	

En	


�n
��r��2�n�r� , �3�

�1�r� ª
�2

2m
2 	

En	



��n�r�
2, �4�

which upon integration both yield the exact total kinetic en-
ergy. Due to the assumed time-reversal symmetry, the two
above functions are related by

��r� = �1�r� −
1

2

�2

2m
�2��r� . �5�

An interesting, and for the following discussion, convenient
quantity is their average

��r� ª
1

2
���r� + �1�r�� . �6�

For harmonic oscillators, it has been observed �4,10,23� that
inside the system �i.e., sufficiently far from the surface re-
gion�, ��r� is a smooth function of the coordinates, whereas
��r� and �1�r�, like the density ��r�, exhibit characteristic
shell oscillations that are opposite in phase for � and �1. We
can express ��r� and �1�r� in terms of ��r� and �2��r�,

��r� = ��r� −
1

4

�2

2m
�2��r� , �7�

�1�r� = ��r� +
1

4

�2

2m
�2��r� , �8�

so that ��r� and ��r� can be considered as the basic densities
characterizing our systems. Equations �2�–�8� are exact for
arbitrary potentials V�r�. For any even number N of particles,
they can be computed once the quantum-mechanical wave
functions �n�r� are known. As mentioned in Sec. I, the po-
tential V�r� can be considered to represent the self-consistent
mean field of an interacting system of fermions obtained in

the DFT approach. The single-particle wave functions �n�r�
are then the Kohn-Sham orbitals �15� and ��r� is �ideally� the
ground-state particle density of the interacting system.

For later reference, we express the densities �2�–�4� in
terms of the Green’s function in the energy representation,
which in the basis ��n�r�� is given by

G�E,r,r�� = 	
n

�n
��r��n�r��

E + i� − En
, �� � 0� . �9�

Using the identity 1 / �E+ i�−En�=P�1 / �E−En��
− i��E−En�, where P is the Cauchy principal value, one
can write the densities as

��r� = −
1


Im�

0




dEG�E,r,r��
r�=r, �10�

��r� =
�2

2m
Im�

0




dE�r�
2 G�E,r,r��
r�=r, �11�

�1�r� = −
�2

2m
Im�

0




dE�r�r�G�E,r,r��
r�=r, �12�

whereby the subscript of the nabla operator � denotes the
variable on which it acts.

The density of states g�E� of the system �1� is given by a
sum of Dirac delta functions, which can be expressed as a
trace integral of the Green’s function

g�E� = 	
n

��E − En� = −
1


Im� dDrG�E,r,r��
r�=r.

�13�

The particle number can then also be obtained as

N = N�
� = 2�
0




dEg�E� . �14�

Due to the discreteness of the spectrum, N�
� is a monoto-
nously increasing staircase function and consequently the
function 
�N�, too, is a monotonously increasing staircase
function.

B. Asymptotic quantum-mechanical results

1. Thomas-Fermi limits and oscillating parts

In the limit N→�, the densities are expected to go over
into the approximations obtained in the TF theory �24�.
These are given, for any local potential V�r�, by

�TF�r� =
4

D

1

��D/2�� m

2�2D/2
�
TF − V�r��D/2, �15�

��1�TF�r� = �TF�r� = �TF�r� , �16�

�TF�r� =
4

�D + 2�
1

��D/2�� m

2�2D/2
�
TF − V�r��D/2+1. �17�

These densities are defined only in the classically allowed
regions where 
TF�V�r� and the Fermi energy 
TF is de-
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fined such as to yield the correct particle number N upon
integration of �TF�r� over all space. The direct proof that the
quantum-mechanical densities, as defined in Sec. II in terms
of the wave functions of a smooth potential, reach the above
TF limits for N→� is by no means trivial. It has been given
for isotropic harmonic oscillators in arbitrary dimensions in
Ref. �10�.

The TF densities �15�–�17� fulfill the following functional
relation:

�TF�r� = �TF��TF�r�� =
�2

2m

4D

�D + 2��D

4
��D

2
�2/D

�TF
1+2/D�r� ,

�18�

which will be investigated further below.
For smooth potentials in D�1 dimensions, next-to-

leading order terms in 1 /N modify the smooth parts of the
spatial densities, which are obtained in the extended
Thomas-Fermi �ETF� model as corrections of higher order in
� through an expansion in terms of gradients of the potential
�25�. These corrections usually diverge at the classical turn-
ing points and can only be used sufficiently far from the
turning points, i.e., in the interior of the system. We do not
reproduce the ETF densities here but refer to �26� �chapter 4�
where they are given for arbitrary smooth potentials in D
=2 and 3 dimensions and to �10� where explicit results are
given for spherical harmonic oscillators in D=2 and 4 di-
mensions.

This leads us to decompose the densities in the following
way:

��r� = ��E�TF�r� + ���r� , �19�

��r� = ��E�TF�r� + ���r� , �20�

�1�r� = ��1��E�TF�r� + ��1�r� , �21�

��r� = ��E�TF�r� + ���r� . �22�

For D=1 and for billiard systems �27�, the subscripts TF and
the explicit relations �15�–�17� hold. The oscillating parts
���r�, etc. are the main objects of this paper.

2. Two types of oscillating parts in spherical systems

We have investigated the density oscillations in various
potentials in D�1 dimensions with radial symmetry such
that V�r�=V�r�, where r= 
r
. We found that, generally, there
exist two types of oscillations in their spatial densities:

�i� regular, short-ranged oscillations with a constant wave-
length in the radial variable r over the whole region, and

�ii� irregular, long-ranged oscillations whose wavelength
decreases with increasing r.

An example is shown in Fig. 1 for a spherical billiard with
unit radius containing N=100 068 particles. Note the irregu-
lar, long-ranged oscillations of ��r� around its bulk value
�27� �TF seen in the upper panel. In the lower panel, where
we exhibit only an enlarged region around the bulk value, we
see that ��r� and �1�r� oscillate regularly around ��r�, but
much faster than ��r� itself and with opposite phases. The

same two types of oscillations are also found in the particle
density ��r�.

For radial systems, we can thus decompose the oscillating
parts of the spatial densities defined in Eqs. �19�–�22� as
follows:

���r� = �r��r� + �irr��r� , �23�

���r� = �r��r� + �irr��r� , �24�

��1�r� = �r�1�r� + �irr�1�r� , �25�

���r� = �irr��r� . �26�

Here the subscript “r” denotes the regular, short-ranged parts
of the oscillations, while their long-ranged, irregular parts
are denoted by the subscript “irr.” We emphasize that this
separation of the oscillating parts does not hold close to the
classical turning points.

As we see in Fig. 1 and in later examples, the oscillating
parts defined above fulfill the following properties in the
interior of the system �i.e., except for a small region around
the classical turning points�:

�a� For D�1, the irregular oscillating parts of ��r� and
�1�r� are asymptotically identical and equal to ���r�,

�irr��r� � �irr�1�r� � �irr��r� = ���r� . �27�

�b� The irregular oscillations are absent �i.e., asymptoti-
cally zero� in the densities of all potentials in D=1 and, also,
in isotropic harmonic oscillators �see Ref. �10�� and in linear
potentials �see �28�� for arbitrary D.

�c� The regular oscillating parts of ��r� and �1�r� are as-
ymptotically equal with opposite signs

�r��r� � − �r�1�r� . �28�

�This relation holds in particular for isotropic harmonic os-
cillators, for which it has been derived �10� asymptotically
for N→� from quantum mechanics.�

These numerical findings will be understood and ex-
plained within the semiclassical theory developed in the fol-
lowing. Henceforth, the symbol � will always denote the sum
of both types of oscillating parts and the subscripts will only
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FIG. 1. Kinetic-energy density profiles of a 3D spherical billiard
with N=100 068 particles �units: �2 /2m=R=1; all densities are di-
vided by N5/3�. Upper panel: ��r� �solid line� and its constant TF
value �TF �dashed�. Lower panel: ��r� �dashed�, �1�r� �dotted�, and
��r� �solid line�. Note that in both panels, the vertical scale does not
start at zero.

SEMICLASSICAL THEORY FOR SPATIAL DENSITY… PHYSICAL REVIEW E 81, 011118 �2010�

011118-3



be used if reference is made to one particular type of oscil-
lations.

III. SEMICLASSICAL CLOSED-ORBIT THEORY

In this section, we present the semiclassical theory, initi-
ated by Gutzwiller �see �29� and earlier references quoted
therein and �20��, for the approximate description of quan-
tum oscillations in terms of classical orbits. In Sec. III A, we
recall the trace formula for the density of states and in Sec.
III B we present the newly developed theory for spatial den-
sity oscillations �19�. In both cases, we limit ourselves—as in
the previous section—to N noninteracting fermions in a local
potential V�r�. The inclusion of finite temperatures in the
semiclassical theory is dealt with in the Appendix.

A. Brief review of periodic orbit theory for the density of states

Before deriving semiclassical expressions for the spatial
densities, we remind the reader of the periodic orbit theory
�POT� for the density of states. The starting point is the
semiclassical approximation of the Green’s function �9�
which was derived by Gutzwiller �20�

Gscl�E,r,r�� = �D	
�

�
D�
exp� i

�
S��E,r,r�� − i��



2
� . �29�

The sum runs over all classical trajectories � leading from a
point r to the point r� at fixed energy E. S��E ,r ,r�� is the
action integral taken along the trajectory �,

S��E,r,r�� = �
r

r�
p�E,q� · dq , �30�

whereby p�E ,r� is the classical momentum

p�E,r� =
ṙ


ṙ

�2m�E − V�r�� , �31�

defined only inside the classically allowed region where E
�V�r�; its modulus is denoted by p�E ,r�. D� is the Van
Vleck determinant

D� =
�− 1�Dm2

p�E,r�p�E,r��
D�, D� = det��p�/�r�� � , �32�

where p� and r�� are the initial momentum and final coordi-
nate, respectively, transverse to the orbit �. The Morse index
�� counts the sign changes of the eigenvalues of the Van
Vleck determinant along the trajectory � between the points
r and r�; it is equal to the number of conjugate points along
the trajectory �30�. The prefactor in Eq. �29� is given by

�D = 2�2i��−�D+1�/2. �33�

The approximation �29� of the Green’s function is now
inserted into the right-hand side of Eq. �13� for the density of
states g�E�. Since r�=r in the trace integral of Eq. �13�, only
closed orbits contribute to it. The running time T��E ,r� of
these orbits, i.e., the time it takes the classical particle to run
though the closed orbit, is given by

T��E,r� =
dS��E,r,r�

dE
. �34�

It was shown by Berry and Mount �31� that to leading order
in �, the orbits with zero running time, T��E ,r�=0, yield the
smooth TF value of g�E�. In systems with D�1, higher-
order terms in � also contribute, which can also be obtained
from the ETF model �see, e.g., chapter 4 of �26��. Separating
smooth and oscillatory parts of the density of states by de-
fining

g�E� ª g̃�E� + �g�E� , �35�

the oscillating part �g�E� is, to leading order in �, given by
the semiclassical trace formula

�g�E� � 	
PO

APO�E�cos� 1

�
SPO�E� −



2
�PO� , �36�

where the sum runs over all periodic orbits �POs�. For sys-
tems in which all orbits are isolated in phase space,
Gutzwiller �29� derived explicit expressions for the ampli-
tudes APO�E�, which depend on the stability of the orbits,
and for the Maslov indices �PO. Performing the trace integral
in Eq. �13� along all directions transverse to each orbit � in
the stationary-phase approximation �SPA� leads immediately
to the periodicity of the contributing orbits. The Maslov in-
dex �PO collects all phases occurring in Eq. �29� and in the
SPA for the trace integral �see �32� for detailed computations
of �PO�. It has been shown �33� that �PO is a canonical and
topological invariant property of any PO. SPO�E� is the
closed action integral

SPO�E� = �
PO

p�E,q� · dq . �37�

For smooth one-dimensional potentials, the trace formula is
particularly simple and reads

�g�D=1��E� =
T1�E�
�

	
k=1

�

�− 1�kcos� k

�
S1�E�� , �38�

where the sum is over the repetitions k�1 of the primitive
orbit with action S1�E� and period T1�E�=S1��E�. Equation
�38� is equivalent to the sum of delta functions in Eq. �13�
using the spectrum obtained in the WKB approximation
�26,34�. For systems with D�1 with continuous symmetries
�and hence also for integrable systems�, the same type of
trace formula �36� holds, but the summation includes all de-
generate families of periodic orbits and the amplitudes
APO�E� and indices �PO have different forms. For an over-
view of various trace formulas and the pertinent literature, as
well as many applications of the POT, we refer to �26�.

B. Semiclassical approximation to the spatial densities

In order to derive semiclassical expressions for the spatial
densities defined in Sec. II, we start from the expressions
given in the Eqs. �10�–�12�, which are functions of r and the
Fermi energy 
, and replace the exact Green’s function
G�E ,r ,r�� by its semiclassical expansion �29�. The energy
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integration can be done by parts, using Eqs. �32� and �34�,
and to leading order in � we obtain for the particle density

��
,r� �
2m�

p�
,r�
Re �D	

�

�
D�
r�=r

T��
,r�
exp� i

�
S��
,r,r�

− i��


2
� . �39�

Again, the orbits with zero running time T�E ,r�=0 yield, to
leading order in �, the smooth TF particle density �15�; the
proof given in �31� for the density of states applies also to
the spatial densities discussed here. Like for the density of
states, higher-order � corrections contribute also to the
smooth part of ��r� in D�1 and will be included in their
ETF expressions. The POs, too, can only contribute to the
smooth part of ��r� since their action integrals �37� are inde-
pendent of r and hence the phase in the exponent of Eq. �39�
is constant. Thus, a priori only nonperiodic orbits �NPOs�
contribute to the oscillating part of ��r�. The same holds also
for the other spatial densities so that we can write their semi-
classical approximations as �19�

���r� �
2m�

p�
̃,r�
Re �D 	

NPO

�
D�
r�=r

T�
̃,r�
exp�i��
̃,r�� ,

�40�

���r� �
�p�
̃,r�


Re �D 	
NPO

�
D�
r�=r

T�
̃,r�
exp�i��
̃,r�� ,

�41�

��1�r�

�
�p�
̃,r�


Re �D 	
NPO

Q�
̃,r�
�
D�
r� = r

T�
̃,r�
exp�i��
̃,r�� .

�42�

The sums are only over NPOs that lead from a point r back
to the same point r. For convenience, we have omitted the
subscript “NPO” from all quantities in the above equations.

The phase function ��
̃ ,r� is given by

��
̃,r� = S�
̃,r,r�/� − �


2
. �43�

The quantity Q�
̃ ,r� appearing in Eq. �42� for ��1�r� is de-
fined as

Q�
̃,r� =
�p�
̃,r� · p�
̃,r���r�=r

p2�
̃,r�
= cos���p,p��� , �44�

where p and p� are the short notations for the initial and final
momenta, respectively, of a given closed orbit � at the point
r. These are obtained also from the action integral �30� by
the canonical relations

�rS��
̃,r,r��
r=r� = − p, �r�S��
̃,r,r��
r=r� = p�. �45�

Since Q in Eq. �44� depends on the angle � between p and
p�, it may be called the “momentum mismatch function,”
being +1 for p=p� �i.e., for POs� and −1 for p=−p� �e.g., for
self-retracing NPOs�.

Note that the upper limit 
 of the energy integral in Eqs.
�10�–�12� has been replaced here by the smooth Fermi en-

ergy 
̃ defined by

N = 2�
0


̃

dEg̃�E�, 
 = 
̃ + �
 . �46�

The reason for this is the following. Since 
�N� is a nons-
mooth staircase function, as mentioned at the end of Sec. II,

it is natural to expand it around its smooth part 
̃ which can
be identified with its TF value 
TF �or 
ETF for D�1�. Taylor
expanding Eq. �14� using Eq. �35� up to first order in �
, we
easily obtain an expression for its oscillating part �cf. �35��

�
� −
1

gETF�
̃�
�

0


̃

dE�g�E� . �47�

The quantity �
 is of higher order in � than 
̃ and can be
considered as a small semiclassical correction; the �g�E� in
the integrand may be expressed through the trace formula
�36�. Now, the contribution of the zero-length orbits to Eq.
�39� yields formally the smooth �E�TF density, but taken at
the exact �quantum� value of 
. The density should therefore

be developed around the smooth �E�TF value 
̃ before it can
be identified with the standard �E�TF density. Its first varia-
tion with �
 leads to a further smooth contribution which
should be taken into account. The same holds for the other
densities. The contribution of all finite-length orbits to �39� is
of higher order in � than the leading smooth �ETF� terms so

it is consistent to evaluate them at 
̃.
In one-dimensional systems, all smooth terms can be ex-

actly controlled. The smooth part of the density may be writ-
ten as

��TF�
,x� � �TF�
̃,x� + �

d�TF�
,x�

d

�

̃

. �48�

The first term on the right-hand side is the standard TF den-
sity �for D=1�. The second term, using Eq. �38� and the fact
that gTF�
TF�=T1�
TF� /2� for D=1, is found to exactly
cancel the contribution of the periodic orbits to Eq. �39�
�evaluated at 
̃�, which has been explicitly calculated in �19�
and given in Eq. �22� there.

For D�1 dimensions, we cannot prove that the same can-
cellation of smooth terms takes place. Furthermore, for the
circular billiard treated in �21�, it is shown that the contribu-
tions of periodic and nonperiodic orbits cannot be separated
in the vicinity of bifurcations that occur for D�1 under
variation of r. For arbitrary local potentials in D�1 dimen-
sions, it is in general a difficult task to evaluate all nonperi-
odic closed orbits. In nonintegrable systems, the number of
POs is known to grow exponentially with energy or some
other chaoticity parameter �cf. the Appendix H in �36� or, to
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a large extent, �37��; the number of NPOs is evidently even
much larger.

For the semiclassical density of states �36�, the summa-
tion over POs is known not to converge in general �cf. �38��.
For the semiclassical expressions �40�–�42�, however, the
convergence of the sums over NPOs is appreciably improved

due to the appearance of their periods T�
̃ ,r� in the denomi-
nators. In practice, we find that it is sufficient to include only
a finite number of shortest orbits, as illustrated, for example,
in Fig. 5 below.

The expressions �40�–�42� are only valid if the NPOs go-
ing through a given point r are isolated. In systems with
continuous symmetries, caustic points exist in which the Van
Vleck determinant D� becomes singular. The same happens
at points where bifurcations of NPOs occur. In such cases,
uniform approximations can be developed which lead to fi-
nite semiclassical expressions; these will be presented in Sec.
III E 3 and in �21�.

We should also emphasize that the semiclassical approxi-
mations are not valid in regions close to the classical turning

points r
 defined by V�r
�= 
̃. Since the classical momentum

p�
̃ ,r
� in Eq. �31� becomes zero there, the spatial density
�40� always diverges at the turning points. Furthermore, the

running time T�
̃ ,r�, which appears in the denominator of all
densities �40�–�42�, may turn to zero at the turning point for
certain orbits. To remedy these divergences, one has to resort
to the technique of linearizing a smooth potential V�r�
around the classical turning points, which is familiar from
WKB theory �39�. We shall discuss this in detail in Sec. IV.

Our semiclassical formulas �40�–�42� can also be applied
to billiard systems in which a particle moves freely inside a
given domain and is ideally reflected at its boundary. The
only modification is that for a given orbit, each reflection at
the boundary contributes one extra unit to the Morse index �
in Eq. �43� since the difference in the semiclassical reflection
phases between a soft and a hard wall is  /2. A detailed
application of our formalism to the two-dimensional circular
billiard, including a complete determination of all closed or-
bits of this system, has been given in �21�.

C. Local virial theorem

Statement and test of the theorem

We now shall discuss a result which can be directly in-
ferred from the semiclassical Eqs. �40�–�42�, without de-
tailed knowledge of the NPOs that contribute to them in a
particular potential. Since the modulus of the momentum

p�
̃ ,r� depends only on position and Fermi energy, but not
on the orbits, we have taken it outside the sum over the
NPOs. Comparing the prefactors in Eqs. �40� and �41� and
using Eq. �31�, we immediately find �19� the relation

���r� � �
̃ − V�r�����r� . �49�

This is exactly the local virial theorem �LVT� that was de-
rived in �10� from the quantum-mechanical densities in the
asymptotic limit N→� for isotropic harmonic oscillators.
Here we obtain it explicitly from our semiclassical approxi-

mation. Since no further assumption about the potential or
the contributing NPOs has been made, the LVT �49� holds
for arbitrary integrable or nonintegrable systems in arbitrary
dimensions with local potentials V�r� and hence also for in-
teracting fermions in the mean-field approximation given by
the DFT. We recall, however, that Eq. �49� is not expected to
be valid close to the classical turning points.

No such theorem holds for the density ��1�r� since it de-
pends on the relative directions of the momenta p and p� of

each contributing orbit through the factor Q�
̃ ,r� �44� ap-
pearing under the sum in Eq. �42�. In Fig. 2 we test Eq. �49�
explicitly for the coupled two-dimensional quartic oscillator

V�x,y� =
1

2
�x4 + y4� − �x2y2, �50�

whose classical dynamics is almost chaotic in the limits �
=1 and �→−� �40,41�, but in practice also for �=0.6 �see,
e.g., �42��. We have computed its wave functions using the
code developed in �42�. In the upper panel of Fig. 2, we
show the left side �dashed line� and the right side �solid line�
of the LVT �49� for this system with N=632 particles, using
the exact densities along line y=x /�3, i.e., ���x ,x /�3� and
���x ,x /�3�. The agreement between both sides is seen to be
very good, except in the surface region. We also show
��1�x ,x /�3� �dotted line�. This demonstrates that the leading
contributing NPOs in this system are not self-retracing. Cor-
respondingly, the quantity ���x ,x /�3� in the lower panel is
seen not to be negligible.

D. D=1 dimensional systems

In a one-dimensional potential V�x�, there is only linear
motion along the x axis. As discussed in �19�, the only types
of NPOs are those running from a given point x to one of the
turning points and back, including k�0 full periodic oscil-
lations between both turning points. We name the two types
of orbits the “+” orbits that start from any point x�0 toward
the closest turning point and return to x and the “−” orbits
that are first reflected from the farthest turning point. Clearly,
these orbits have opposite initial and final momenta, p=−p�,

δτ
(x

,y
),

δτ
1
(x

,y
) 20

10

0

-10

-20δτ
(x

,y
),

δτ
1
(x

,y
) 20

10

0

-10

-20δτ
(x

,y
),

δτ
1
(x

,y
) 20

10

0

-10

-20

x

δξ
(x

,y
)

43.532.521.510.50

20

10

0

-10

-20

FIG. 2. �Color online� Oscillating part of spatial densities of N
=632 particles in the nearly chaotic potential �50� with �=0.6 ��
=m=1�. �Top� Solid �black� line gives the right-hand side of the
LVT �49�, the dashed �red� line gives ���x ,y�, and the dotted �blue�
line gives ��1�x ,y�, all taken along the line y=x /�3. �Bottom�
���x ,y� along y=x /�3.
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so that the momentum mismatch function �44� equals

Q�
̃ ,x�=−1. Consequently, one obtains from Eq. �42� di-
rectly the relations

��1�x� � − ���x�, ���x� � 0. �51�

Note that these results do not hold near the classical turning
points, where the semiclassical approximation breaks down
�cf. Sec. IV; see also the example in Fig. 10, where ���x� is
small inside the systems but becomes comparable to ���x�
near the turning points�.

The explicit evaluation of Eq. �40� for D=1 was done in
�19� for smooth potentials; the result in the present notation
is

���x� � −
m

p�
̃,x�
	

k=0,�

�

�− 1�kcos�kS�
�k��
̃,x�/��

T�
�k��
̃,x�

, �52�

where S�
�k� are the actions of the “+” and “−”-type NPOs

�including k full periods� and T�
�k� are there running times

defined by Eq. �34�.
A numerical example was given in �19� for the quartic

oscillator in one dimension

V�x� = x4/4. �53�

Unfortunately, an error occurred in the drawing of Fig. 1 in
�19�; the present Fig. 3 is its corrected version. In the upper
panel, it is seen that the semiclassical approximation �52� for
���x� agrees very well with the quantum result and in the
lower panel, the relations �49� and �51� between the quantum
results are seen to be well fulfilled. The only sizable devia-
tions occur very near the classical turning point, as expected.

We emphasize that the Friedel oscillations near the sur-
face are dominated by the primitive + orbit �with k=0�. Its
contribution diverges, however, since its running time

T+
�0��
̃ ,x� tends to zero there. This divergence can be rem-

edied in the WKB-type linear approximation to the potential
which we discuss in Sec. IV A for smooth potentials or by
the short-time propagator for hard-wall potentials �i.e., bil-
liard systems� discussed in Sec. IV B. First we will, however,
examine the strictly linear potential for which the WKB ap-
proximation is exact.

1. Linear potential

In �28�, we give the exact quantum-mechanical densities
for the one-dimensional potential V�x�=ax. Although this po-
tential does not bind any particles, its density close to the
turning point will be of use in Sec. IV A. Here we give its
semiclassical analysis.

Since a particle cannot be bound in this potential, the only
closed classical orbit starting from a point x is the primitive

orbit + �k=0� going to the turning point x
= 
̃ /a and back to
x. Its action is

S+�x� = S+
�0��x� = 2�

x

x


p�
̃,x�dx =
4�2m

3a
�
̃ − ax�3/2

= �
4

3

z

3/2 = �2�
, �54�

where the last equalities make use of the quantities defined
as

� = � 2m

�2a21/3

�55�

and

z
 = ��ax − 
�, �0 = 2�2ma

�2 1/3

= 2�a . �56�

Using Eq. �40� for D=1, we obtain the semiclassical contri-
bution of this orbit to the spatial density �cf. Eq. �23� of �19�
with �=+, k=1�

���x� = −
a

2

1

�
̃ − ax�
cos� 1

�
S+�x�� , �57�

which is identical to the asymptotic expression for the exact
quantum-mechanical result �28�. Thus, the orbit + creates the
Friedel oscillations. Using the LVT �49� and Q=−1 in Eq.
�42�, we obtain immediately the expression for the kinetic-
energy densities

���x� = − ��1�x� = −
a

2
cos� 1

�
S+�x�� , �58�

which is identical to the asymptotic quantum result �28�. The
expression �57� diverges at the classical turning point x
. To
avoid this divergence, one has to use the exact expressions
�28�, which can be considered as the regularized contribu-
tions of the primitive + orbit near the turning points.
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FIG. 3. �Color online� �Upper panel� Oscillating part ���x� of
the particle density of N=40 particles in the quartic potential �53�
�without spin degeneracy; units: �=m=1�. Dots �black� show the
quantum-mechanical result; solid line �red� shows the semiclassical
result �52� and dashed line �blue� the approximation �65� �for D
=1� valid for small x values. �Lower panel� Tests of relations �49�
and �51� between the quantum-mechanical densities for the same
system. Solid line �red�: ���x�, dashed line �blue�: −��1�x�, dotted
line �black�: right-hand side of Eq. �49�. �Corrected figure from
�19�.�
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2. One-dimensional box

For the one-dimensional box of length L, Eq. �52� has to
be modified by omitting the phase factor �−1�k, since each
turning point gives two units to the Morse index. Using
�TF=2 /�2m
TF /�2 and summing over all k, one finds that
it reproduces exactly the quantum-mechanical ��x� in the
large-N limit so that the semiclassical approximation here is
asymptotically exact.

E. D�1 dimensional potentials with spherical symmetry

In this section, we discuss potentials in D�1 with spheri-
cal symmetry so that V�r�=V�r� depends only on the radial
variable r= 
r
. The particle number N is chosen such that
energy levels with angular-momentum degeneracy are filled
so that all spatial densities, too, depend only on r. In such
systems, the two kinds of oscillations discussed in Sec. II B 2
can always be separated clearly in the central region r�0.
Indeed, this behavior is explained by the fact that the angular
momentum of the orbits is conserved. Therefore, the shape
of a closed orbit whose starting point r approaches the center
of the potential tends to become flattened and concentrated
near a radial periodic orbit. Thus, close to the center, there
are only two types of nonperiodic orbits. First, the radial
orbits of the same types + and − as discussed for the one-
dimensional case, with opposite momenta p=−p�, leading to
the same kind of oscillations that we know for D=1. Second,
nonradial orbits which near r=0 have almost equal momenta
p�p� so that they become nearly periodic.

Semiclassically, the two types of radial and nonradial
NPOs are responsible precisely for the two kinds of oscilla-
tions which we described in Sec. II B 2. The regular short-
ranged oscillations, denoted �r��r�, etc., can be attributed to
the radial + and − orbits. The long-ranged irregular oscilla-
tions, denoted �irr��r�, etc., must be attributed to the nonra-
dial NPOs: these lead to slow oscillations because their ac-
tions are almost independent of the starting point near r=0.

The contributions of the radial NPOs in radially symmet-
ric systems have already been anticipated in �19�; they will
be discussed in the following section. In particular, like for
D=1, the primitive + orbit is seen to be solely responsible
for the Friedel oscillations near the surface of a D�1 dimen-
sional spherical system.

Nonradial orbits can only occur if there exist classical
trajectories which intersect themselves in a given point r. As
is well known from classical mechanics, such orbits do not
exist in isotropic harmonic oscillators �and in the Coulomb
potential�. This explains the fact that no irregular long-
ranged oscillations are found in the densities of harmonic
oscillators �10� �or, trivially, in any one-dimensional poten-
tial�.

We emphasize that for D=2, all closed NPOs are isolated
except if they start at r=0, in which case they form degen-
erate families due to the radial symmetry �cf. Sec. III E 3�. In
D�2 dimensions, however, also the nonradial NPOs starting
at r�0 have continuous rotational degeneracies. For the cor-
responding families of orbits, the Van Vleck determinant D�
in the semiclassical Green’s function �29� becomes singular
at all points r. This divergence can be removed �43� by going

one step back in the derivation of Eq. �29�. In the convolu-
tion integral for the time-dependent propagator, one has to
perform a sufficient number of intermediate integrals exactly
rather than in the stationary-phase approximation �for details,
see �43� where this was done to obtain the trace formula �36�
for systems with continuous symmetries�. As a result, the
semiclassical amplitudes of the degenerate families of orbits
are of lower order in � than for isolated orbits and thus have
a larger weight. In our present case, the � dependence of the
ratio of amplitudes between the irregular and the regular os-
cillations, e.g., in the particle density, becomes


�irr��r�


�r��r�


� �−�D−2�/2, �D� 1� . �59�

The same ratio holds also for the other spatial densities. This
can be seen, e.g., in Fig. 1 for the spherical billiard in D=3,
where the amplitude of the irregular oscillations is larger
than that of the radial oscillations �except near r=0�. In pass-
ing, we note that for spherical billiards with radius R, the
energy dependence of the semiclassical results scales with
the dimensionless variable p
R /� and the ratio �59� becomes

�irr� /�r�
� �p
R /���D−2�/2.

It should be stressed that the separation of two classes of
NPOs and hence the two types of oscillations is not possible
in systems in D�1 dimensions without radial symmetry.
This will be illustrated in Sec. III F.

A further complication in systems with D�1 is that the
NPOs can undergo bifurcations under the variation of the
starting point r. At these bifurcations, new NPOs or POs are
created. This is discussed extensively in a publication �21� on
the two-dimensional circular billiard. For this system, a com-
plete classification of all NPOs could be made and analytical
expressions for their actions and Van Vleck determinants
have been derived.

1. Contributions of the radial orbits: Earlier results

Recall that since all radial NPOs fulfill p�=−p, they have

Q�
̃ ,r�=−1 under the sum in Eq. �42�. Therefore, we imme-
diately obtain the semiclassical relation �19�

�r�1�r� � − �r��r� . �60�

Indeed, this was found to be fulfilled, sufficiently far from
the turning point, for all quantum systems with radial sym-
metry that we have studied numerically.

For the following, it is important to notice the action of
the differential operator � on the semiclassical density in Eq.
�40�. The contributions of leading order in � �i.e., the terms
of the largest negative power of �� come from the phase

��
̃ ,r� given in Eq. �43�. From the canonical relations �45�,
we find

�exp�i��
̃,r�� =
i

�
�p� − p�exp�i��
̃,r�� �61�

and
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�2exp�i��
̃,r�� = −
1

�2 �p� − p�2exp�i��
̃,r�� , �62�

which occurs for each NPO under the summation in Eq. �40�.
For the radial orbits, one therefore obtains with Eq. �31� the
following differential equation for �r��r�, which was already
given in �10�:

−
�2

8m
�2�r��r� � �
̃ − V�r���r��r� . �63�

For small distances r from the center so that V�r��
̃, Eq.
�63� becomes the universal Laplace equation

−
�2

8m
�2�r��r� � 
̃�r��r� , �64�

which was obtained asymptotically from the quantum-
mechanical densities of isotropic harmonic oscillators in
�10�. It has the general solution

�r��r� = �− 1�Ms−1 m

�Tr1�
̃�
� p


4�r
�J��2rp
/�� . �65�

Here, J��z� is a Bessel function with index �=D /2−1,
Ms=M +1 is the number of filled main shells �44�,
Tr1 is the period of the primitive radial full oscillation, and

p
= �2m
̃�1/2 is the Fermi momentum. The normalization of
Eq. �65� cannot be obtained from the linear Eq. �64�; we
have determined it from the calculation presented in Sec.
III E 3. For harmonic oscillators, where Tr1=2 /�, Eq. �65�
becomes identical with the result in Eq. �69� of �10� that was
derived from quantum mechanics in the large-N limit.

The quantity �r��r� can also be calculated directly from
Eq. �40�, including only the radial NPOs. The summation
over their repetitions goes exactly like in the one-
dimensional case done in �19�, except for the evaluation of
the determinant D�. This determinant becomes singular at
r=0 due to the continuous degeneracy of the + and − orbits:
the point r=0 is a caustic point for all radially symmetric
systems with D�1. The regularization of this singularity,
leading precisely to the result �65�, is discussed in Sec.
III E 3 below.

2. Isotropic harmonic oscillators in D dimensions

We now investigate the densities in the isotropic
harmonic-oscillator �IHO� potential in D dimensions defined
as

V�r� =
m

2
�2r2, r = 
r
, r � RD. �66�

First we mention the well-known fact that in IHO potentials
with arbitrary D�1, all orbits with nonzero angular momen-
tum are periodic, forming ellipses which may degenerate to
circles or radial librations. Hence, the only NPOs are the
radial orbits + and −. Since we just have seen that in the
leading-order semiclassical approximation, �r�1�r�=−�r��r�,
it follows that ���r�=0 to leading order like for D=1, thus
explaining the smooth behavior of ��r� for IHOs �10�.

For the IHO potentials, the transverse determinant D� can
be easily computed. It is diagonal and reads


D��
̃,r�
 = � m
̃

rp�
̃,r�
�D−1

, �67�

which does not depend on the type and the repetition number
k of the orbit. Following Eq. �40� and �19�, we compute
���r� as a sum over the contributions of the + and − orbits,
which is given by

���r� =
4m�

�2���D+1�/2
1

p�
̃,r�
� m
̃

rp�
̃,r�
��D−1�/2

� 	
k=0,�

�
cos�S�

�k��
̃,r� − �D + 1�4 − ��
�k�

2 �
T�

�k��
̃,r�
. �68�

Here we have used the analytical form of the actions and
periods

S�
�k��
̃,r� = �2k + 1�


̃

�
� rp�
̃,r��

2
̃

�
arcsin�m�r

p

 ,

�69�

T�
�k��
̃,r� = �2k + 1�



�
�

2

�
arcsin�m�r

p

 . �70�

We compute the Morse indices following Gutzwiller �45�.
Each turning point contributes a phase of  /2. Besides, we
evaluate the number of extra conjugate points including their
multiplicities depending on the dimension, contributing a
phase �D−1� /2 each �they are most easily determined from
the propagator of the harmonic oscillator in the time repre-
sentation�. The final result for the Morse indices is

�+
�k� = 2kD + 1, �−

�k� = 2kD + D . �71�

We note that the Eq. �68� is consistent with results derived in
�11� from the quantum-mechanical density ��r�.

Figure 4 shows a comparison of the semiclassical results
�68� to the exact quantum result for the case D=4. We have
multiplied both by a factor r3 since the semiclassical deter-
minant D� diverges at r=0 which is a caustic point due to
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FIG. 4. �Color online� Oscillating part of the spatial particle
density times r3 for four-dimensional �4D� IHO for N=632 502,
i.e., with M =50 filled shells �units: �=m=�=1�. Dots are the quan-
tum results. Solid �red� line is the analytical expression �68� using
the Morse indices given in Eq. �71� and dashed �blue� line is the
asymptotic formula �65� valid close to r=0.
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the spherical symmetry. This divergence will be regularized
in the following section.

Using the Morse indices �71� and the expression 
̃
=���M + �D+1� /2� �10�, we can perform the summation
over k in Eq. �68� analytically for small r, like it was done in
�19� for the one-dimensional �1D� case. The result then is
exactly that given in Eq. �65� with Tr1�
̃�=2 /�, but replac-
ing the Bessel function J��z� by its asymptotic expression for
large argument z, i.e., using

J��z� →� 2

z
cos�z − �/2 − /4� . �72�

3. Regularization close to the center

In this section, we compute the contribution of radial
NPOs to the semiclassical particle density close to the center
of an arbitrary potential with radial symmetry. As stressed in
the last section, the semiclassical Green’s function for D
�1 is not defined at r=0 where D� diverges. The reason is
the caustic that occurs there: fixing the position of the point
r=r�=0 does not uniquely determine a closed orbit �periodic
or nonperiodic� which belongs to a continuously degenerate
family due to the spherical symmetry. A standard method to
solve this problem is to introduce the mixed phase-space
representation of the Green’s function close to the diverging
point, as proposed initially by Maslov and Fedoriuk �46�.

Here we follow more specifically the procedure outlined
in �47�. The mixed representation of the Green’s function can
be approximated in a form analogous to that in the coordi-
nate representation. This is due to the smoothness of the
phase-space torus which implies that no diverging points can
occur simultaneously in position and momentum �cf. �46��.
Following Gutzwiller, we use for every classical trajectory �
an “intrinsic” �or local� coordinate system r= �r� ,r��, where
the coordinate r� is taken along the trajectory and r� is the
vector of all other coordinates transverse to it; p= �p� ,p�� is
the corresponding system for the momentum. We next re-
write the coordinate representation of the Green’s function as
the inverse Fourier transform of the mixed Green’s function
with respect to the final transverse momentum p�� ,

Gscl�E,r,r��,r�� � =
1

�− 2i���D−1�/2	
�
� dp��

� Ĝy�E,r,r��,p�� �exp� i

�
r�� · p��  ,

�73�

where the sum is over all classical trajectories � starting at r
and ending at �r�� ,p�� � in phase space. Hereby, the contribu-
tion of the orbit � to the semiclassical mixed representation
of the Green’s function is given by �46�

Ĝy�E,r,r��,p�� � = �DD̂y�E,r,r��,p�� �exp� i

�
Ŝ��E,r,r��,p�� �

−
i

2
�̂y , �74�

where Ŝ is the Legendre transform of the action S between
the variables r�� and p��

Ŝ��E,r,r��,p�� � = S��E,r,r��,r�� � − r�� · p�� . �75�

Since in the mixed-representation Green’s function we have

to evaluate the action Ŝ for radial orbits with fixed momen-
tum close to the center, the rotational symmetry in position is

removed and Ĝ is regular. The Van Vleck determinant in this
representation is

D̂y =
m


p�p��
1/2 
D̂�y
1/2, D̂�y = det� �p�

�p��
 �76�

and the Morse index becomes

�̂� = � ��, for positive eigenvalue of det� �r��

�p��


�� + 1, for negative eigenvalue of det� �r��

�p��
 .�

Far from singular points, the evaluation of Eq. �73� using the
stationary-phase approximation �SPA� yields �48� the stan-
dard semiclassical Green’s function �29�.

After performing the � expansion and the integration over
the energy similarly as in �19�, the oscillating part of the
particle density is given by

���r� = 2	
�

Im� i�D�

T
� dp�� Ĝ�
̃,r,r�,p�� �exp� i

�
r� · p�� � .

�77�

Close to the center of the potential, now, we replace the
nonradial NPOs by the radial ones with �=� orbits with kth
repetitions. For nonperiodic orbits in the radial direction r,
we have r� =r. We neglect the higher orders in r�, leading to
the following approximations:


det��p�/�p�� �
 � 1,


p�
 � 
p��
 � p��
̃,p�� � ª�2m
̃ − p��
2,

�r,r�� � �r,0� ,

Ŝ�
�k� � �k + 1/2�Sr1� 2rp��,

T�
�k� � �k + 1/2�Tr1. �78�

Furthermore, we approximate the action Sr1 of the primitive
periodic diameter orbit by Sr1�2��M + �D+1� /2�. This is

exact for IHOs where Sr1=2
̃ /� and 
̃=���M + �D
+1� /2� can be used �10�; for arbitrary radial potentials, it
corresponds to a radial WKB quantization, whereby M is a
“main shell” quantum number that has to be suitably chosen
�44�. Also, we assume that each eigenvalue of det��r�� /�p�� �
is negative �positive� for the orbits + �−�, leading to
�̂+

�k�= �̂−
�k�. This is again exact for IHOs; for other radial po-

tentials, we have verified its validity numerically. With these
approximations, the sum over the repetitions of all radial
orbits can be performed exactly like in the previous section.
The oscillating part of the particle density then simplifies to
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�r��r� =
�− 1�Mm

�2��D−1Tr1
� dp��

cos�2rp��
̃,p�� �/��

p��
̃,p�� �
. �79�

The integration has to be taken over half the solid angle in
the �D−1�-dimensional transverse momentum space, avoid-
ing a double counting of the two orbits. So it is natural to
make a change of variables to dimensionless hyperspherical
coordinates. Using the integral representation of the Bessel
functions �49�

J��z� =
2�z/2�−�

���� + 1/2�
�

0

1

�1 − t2��−1/2cos�zt�dt , �80�

we obtain exactly the same result as in Eq. �65�, confirming
its normalization.

We stress that this regularization is only valid near the
center, i.e., for r�0, as can be seen in the example of Fig. 4,
where the result �65� is displayed by the dashed line. The
reason is that for larger values of r, the approximations �78�
are no longer valid. If one restricts oneself to the leading
contributions of the primitive orbits + and − with k=0, a
“global uniform” approximation can be made which interpo-
lates smoothly between the regularized result �65� near r=0
and the correct semiclassical contributions obtained from Eq.
�40� at larger r. This uniform approximation is derived and
used in �21� for the two-dimensional �2D� circular billiard
system which we briefly discuss in the following section.

4. Two-dimensional circular billiard

The two-dimensional circular billiard, which can be taken
as a realistic model for quantum dots with a large number N
of particles, has been investigated semiclassically in �21�,
where all its periodic and nonperiodic closed orbits have
been classified analytically. We discuss there also the various
bifurcations at specific values of the radial variable r, at
which POs bifurcate from NPOs or pairs of NPOs are born.
At these bifurcations, the semiclassical amplitudes in Eqs.
�40�–�42� must be regularized by suitable uniform approxi-
mations. We refer to �21� for the details and reproduce here
some numerical results to illustrate the quality of the semi-
classical approximation.

Figure 5 shows the total particle density ��r� for N=606
particles in the circular billiard. The solid line gives the
quantum result, obtained from Eq. �2� using the solutions of
the Schrödinger equation with Dirichlet boundary conditions,
which are given in terms of cylindrical Bessel functions. The
dotted line gives the semiclassical result, obtained by sum-
ming over the �30 shortest NPOs. �Hereby, we used the
regularization of the radial + and − orbits at r=0 by Eq. �65�,
that of the primitive + orbit near r=R by Eq. �95� given in
Sec. IV B 1 below, and uniform approximations for the bi-
furcations of some of the nonradial NPOs as described in
detail in �21�.� We see that, indeed, a satisfactory approxima-
tion of the quantum density can be obtained in terms of the
shortest classical orbits of this system.

In Fig. 6, we demonstrate explicitly the contributions of
nonradial NPOs to the kinetic-energy densities �1�r� and ��r�
close to the center, calculated as in Fig. 5 but for N=9834
particles. We clearly see that ���r� is not smooth; its slow,

irregular oscillations are due to nonradial NPOs which have
the form of polygons with 2k reflections �k=1,2 , . . .� at the
boundary and one corner at a point r close to the center. The
first kmax=20 of them were included with the appropriate
regularization at r=0 where they are degenerate with the kth
repetitions of the diagonal PO �see �21� for details�. The
agreement between quantum and semiclassical results is
again satisfactory; the discrepancy that sets on for r 0.18 is
due to the missing of more complicated nonradial orbits. The
quantity ��1�r�, on the other hand, clearly exhibits both kinds
of oscillations according to Eq. �25�: the slow irregular part,
which is identical with ���r�, is modulated by the regular fast
oscillations due to the radial orbits.

F. D�1 dimensional systems without continuous symmetries

In D�1 dimensional systems without continuous symme-
tries, it is in general not possible to find the classical orbits
analytically. As in POT, the search of closed orbits must then
be done numerically. A practical problem in such systems is
also that the densities as functions of D coordinates are not
easily displayed. For tests and comparisons of various ap-
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FIG. 5. Particle density in the two-dimensional disk billiard with
radius R, containing N=606 particles �units: �2 /2m=R=1�, divided
by N. Solid line is the quantum result and dotted line the semiclas-
sical result with all regularizations �see �21� for details�.
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FIG. 6. Oscillating parts of kinetic-energy densities, ��1�r� �fast
oscillations� and ���r� �slow oscillations� for N=9834, divided by
N5/3. �Solid lines� Exact quantum results. �Dashed lines� Semiclas-
sical results and units as in Fig. 5.
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proximations or of the local virial theorems, we have to re-
sort to taking suitable one-dimensional cuts �i.e., projections�
of the densities. In the following paragraph, we discuss a
class of integrable billiard systems, in which all closed clas-
sical orbits can easily be found and their semiclassical con-
tributions to the densities can be analytically obtained. These
are D-dimensional polygonal billiards that tessellate the full
space under repeated reflections at all borders. We illustrate
the method for the example of a rectangular billiard. Al-
though this does not correspond to any physical system �un-
less experimentally manufactured as a rectangular quantum
dot with many electrons�, it is a useful model without spheri-
cal symmetry that allows for analytical calculation of the
classical orbits and their properties.

Billiards tessellating flat space: The rectangular billiard

For billiards, classical trajectories are straight lines which
are reflected at the boundary according to the specular law.
Let us consider a two-dimensional billiard that tessellates the
plane, such as the rectangular billiard shown in Fig. 7.
Choose a trajectory starting at a point P, reflected at the point
R0, and reaching the point P1. Now reflect the boundary at a

side containing the point R0, the image R0P1� of the segment
R0P1 gives the straight line PP1�. The next portion of the
trajectory after reflexion in R1 can be found by reflecting the
new billiard at the side containing R1�. This process can be
repeated until the trajectory ends. To get the closed trajecto-
ries at P, we have to compute all images of P in the images
of the billiard. Now a straight line joining P and an image of
P gives a closed orbit. Thus, constructing all images of P by
simple geometry enables one to compute all trajectories and
their related initial and final momenta for D-dimensional po-
lygonal billiard that fills the D-dimensional Euclidean space.
Note that the Jacobian D� for these systems is easily com-
puted and equals �p /LNPO�D−1, where LNPO is the length of
the orbit.

We illustrate this method for the case of a 2D rectangular
billiard with side lengths Qx and Qy. There are four types of
images of P�x ,y�; one leading to POs and three �labeled by
the indeces a, b, and c� leading to NPOs �see Fig. 7�. Table I
lists the basic ingredients to compute the spatial densities
using L�x ,y�=2�x2+y2 and

f�x,y,�� =
4�p


1/2

�2�L�x,y��3/2cos� p
L�x,y�
�

−
3

4
− �� ,

�81�

with p
= �2m
̃�1/2. From Eqs. �40� and �42� for D=2 we
obtain

���x,y� = 	
kx,ky=−�

�

	
l=a,b,c

��l�x,y� , �82�

��1�x,y� = 	
kx,ky=−�

�

	
l=a,b,c

��1l�x,y� , �83�

where the partial contributions ��l�x ,y� and ��1l�x ,y� for the
orbits of types l=a, b, and c are given in Table I. ���x ,y� is
obtained from Eq. �82� using the LVT �49�.

We now present numerical results for the rectangular bil-
liard with side lengths Qx=21/4, Qy =31/4 �units: �2=2m=1�,
containing N=2000 particles. In Fig. 8, we show the quanti-
ties �� �top�, �� �center�, and ��1 �bottom� as functions of y
with fixed x=Qx /2. Dashed lines are the quantum-
mechanical results and solid lines the semiclassical ones us-
ing Eqs. �82�, �83�, and �49�. We see that summing over all

D D C D CC

D D C D CC

A A B A BB

A A B A BB

FIG. 7. Images �triangles and crosses� of a point P�x ,y� �full
circle� for a rectangular billiard. Joining by a straight line the full
circle to a cross gives a nonperiodic orbit whereas joining to a
triangle gives a periodic orbit.

TABLE I. Contributions of different types of nonperiodic orbits to the spatial densities in a rectangle
billiard with sides Qx and Qy. First row gives the position of the images of P with �kx ,ky��Z2. Second row
gives the length of the orbit and third row the angle � between the initial and final momenta. Fourth and fifth
rows give the contributions to �� and ��1, respectively.

Type of orbits a b c

Image points of P�x ,y� �2kxQx+x ,2kyQy −y� �2kxQx−x ,2kyQy +y� �2kxQx−x ,2kyQy −y�
Orbit length L�kxQx ,kyQy −y� L�kxQx−x ,kyQy� L�kxQx−x ,kyQy −y�

� �a=−2 arctan�
kyQy−y

kxQx
� �b=2 arctan�

kyQy

kxQx−x � �c=

Contribution to �� ��a= f�kxQx ,kyQy −y ,1� ��b= f�kxQx−x ,kyQy ,1� ��c= f�kxQx−x ,kyQy −y ,0�

Contribution to ��1 ��1a= 
̃ cos��a���a ��1b= 
̃ cos��b���b ��1c= 
̃ cos��c���c
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orbits yields very good agreement, except close to the
boundary where the Friedel oscillations were not regularized.

In Fig. 9, we display selected contributions of some of the
primitive orbits �k=0� to the particle density ���x ,y�. The
solid line gives the contribution of self-retracing orbits with
p=−p� and the dashed line that of the other primitive NPOs.
It is evident that no clear separation of regular short-ranged
and irregular long-ranged oscillations can be made here.

IV. REGULARIZATION NEAR SURFACE

As we have pointed out in the previous section, the semi-
classical approximation of density oscillations in terms of
classical orbits breaks down near the classical turning point
due to the diverging amplitude of the primitive + orbit �with

k=0� which close to the surface is responsible for the Friedel
oscillations. In order to regularize this diverging amplitude,
different techniques must be used for smooth potentials and
for billiards with reflecting walls.

A. Smooth potentials

In smooth potentials V�r�, the divergence can be regular-
ized by linearizing the potential near the classical turning
points, as it is done in the standard WKB approximation
�39�. In the surface region close to a turning point, the exact
results for linear potentials given in �28� can then be used.
We demonstrate this first for the one-dimensional case and
then illustrate it also for potentials in D=3 with spherical
symmetry.

1. Linear approximation to a smooth 1D potential

We start from an arbitrary smooth binding potential V�x�
and approximate it linearly around the turning point x
 de-

fined by V�x
�= 
̃. Without loss of generality, we assume
x
�0. Expanding V�x� around x
 up to first order in x−x
,
we get the approximated potential

Ṽ�x� = 
̃ + a�x − x
�, a = V��x
�� 0. �84�

We can therefore apply the results of �28�. The oscillating
part of the density near the turning point then becomes

��lin�x� = �0��Ai��z
��2 − z
Ai2�z
� −
1


�− z
!�x
 − x�� ,

�85�

where the last term is the subtracted TF part and

�0 = 2�2ma

�2 1/3

, z
 =
�0

2
�x − x
� . �86�

The oscillating parts of the kinetic-energy densities ��x� and
��x� become in the same approximation

��lin�x� =
2a

3
�Ai�z
�Ai��z
� − z
�Ai��z
��2 + z


2Ai2�z
�

−
1



z

3/2!�x
 − x�� , �87�

��lin�x� = −
a

3
�Ai�z
�Ai��z
� + 2z
�Ai��z
��2 − 2z


2Ai2�z
�

+
2



z

3/2!�x
 − x�� . �88�

In the next step, we introduce uniform linearized approxima-
tions, in which the argument z
 in Eqs. �85�, �87�, and �88� is
not as given in Eq. �86� but replaced by

z̃
 = − �3S+�x�/4��2/3, �89�

where S+�x� is the correct action of the + orbit for the given
potential V�x�. One can show that this relation is exact for
the linear potential; it is uniform for other smooth potentials
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FIG. 8. �Color online� Oscillating part of the spatial densities for
a rectangular billiard with sides Qx=21/4 and Qy =31/4 for N=2000
along the line x=Qx /2 �units: �2=2m=1�. Solid �black� lines are
the semiclassical results using Eqs. �82�, �83�, and �49�; dashed
�red� lines are the quantum-mechanical results.
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FIG. 9. �Color online� Same system as in Fig. 8. Here, selected
contributions to Eq. �82� of the primitive NPOs with k=0 are
shown. Full �black� line gives the contributions of the primitive
self-retracing orbits and dashed �red� line that of all other primitive
orbits.
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in that it holds locally at the turning point and yields the
correct phase of the oscillation at all other distances from the
turning point.

Figure 10 shows numerical results for these uniform ap-
proximations for the quartic oscillator �53� with N=40 par-
ticles compared to the exact quantum results. We see that the
uniform linearized approximation reproduces very well the
Friedel oscillations near the turning point in all three densi-
ties. The phase of the oscillations is seen to be correct at all
distances. The amplitudes are not exact in the asymptotic
region, i.e., near x=0. This is not surprising since the contri-
butions of all − orbits and those of the + with k�0 are
missing in this approximation. We see that ���x� vanishes
inside the system, as expected from the semiclassical
leading-order result on the right-hand side of Eq. �51�. How-
ever, near the turning point, where the semiclassical approxi-
mation breaks down, the magnitude of ���x� is comparable
to—and for the quartic potential even larger than—that of
���x�. �Note that all three density oscillations are shown on
the same vertical scale.�

2. Linear approximation to smooth radially symmetric potentials
in D�1

We now start from an arbitrary smooth binding potential
with radial symmetry, V�r�=V�r�, r= 
r
, in D�1 dimen-
sions. As above, we replace it by its linear approximation
around the turning point r
 analogously to Eq. �84�

Ṽ�r� = 
̃ + a · �r − r
�, a = �V�r
� . �90�

Due to the spherical symmetry of V�r�, all components of the
vector a have the same magnitudes

a = ar
/r
, a = V��r
� . �91�

Therefore, we may choose the radial variable r along any of
the Cartesian axes xi and the result

��xi� = −
1

48
�i0

3 �Ai�zi
�Ai��zi
� + 2zi
�Ai��zi
��2

− 2zi

2 Ai2�zi
��, �D = 3� �92�

where �i0=2�iai, taken from �28� for the linear potential

with D�1 , applies with the replacements xi→r, zi

→��ar−
�. As in Sec. IV A 1 for D=1, we may then sub-
tract their ETF contribution. Finally, we introduce the uni-
form approximation to their oscillating parts near the surface
with the argument �89� expressed in terms of the action S+�r�
of the primitive radial + orbit of the given radial potential
V�r�,

z̃
 = − �3S+�r�/4��2/3. �93�

In Fig. 11, we show numerical results for this approxima-
tion for the three-dimensional �3D� IHO with Ms=40 occu-
pied shells. The upper panel shows the exact result for ���r�
�solid line�, whereby only the TF approximation was used for
its smooth part: ���r�=��r�−�TF�r�. We notice that the oscil-
lations in the interior are not symmetric about the zero line,
which is due to smooth errors in the TF density. In the lower
panel, the ETF corrections have been included in ���r�; now
the oscillations are symmetric about zero. The price paid for
this is that ���r� diverges at the classical turning point. The
uniform linear approximation �92� with the argument �93�,
shown in both panels by the dashed lines, reproduces well
the Friedel oscillation near the surface. In the interior, it fails
due to the missing contributions of the repetitions �k�0� of
the + and of all − orbits. Once more, these results demon-
strate that the Friedel oscillations near the surface are semi-
classically explained by the primitive + orbit alone. Its di-
verging amplitudes according to Eq. �40� must, however, be
regularized by the uniform linear approximation.

In Fig. 12, we show the total density for the 3D IHO with
Ms=20 filled shells. The solid line is the exact quantum re-
sult �2�. The crosses give the semiclassical result as the sum
�ETF�r�+���r�, where the latter is calculated from the sum
over the NPOs in Eq. �68� up to kmax=15. We see that the
semiclassical result reproduces very accurately the exact re-
sult up to r�5.9, which is rather close to the turning point
r
�6.48 where it diverges. The linearized approximation is

-4
0
4(x

)

-20

-10

0

10

20
(x

)

0 1 2 3 4 5
x

-4
0
4

(x
)

FIG. 10. Oscillating parts of densities for the quartic potential
�53� with N=40 particles �units �=m=1� shown on the same scale.
�Solid lines� Exact quantum-mechanical results. �Dotted lines� Uni-
form linearized approximations �85�, �87�, and �88� with the argu-
ment z̃
 given in Eq. �89�.
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FIG. 11. Oscillating part of particle density for the 3D IHO with
N=22 960 particles �Ms=40� �units �=m=�=1�. �Solid lines� Ex-
act results. �Dashed lines� Uniform linearized approximation �92�
from �28� with argument z̃
 given in Eq. �93�. �Upper panel�
Smooth part in ���r� taken as TF density. �Lower panel� Smooth
part in ���r� taken as ETF density.
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shown by the dashed line; it approximates the exact density
closely above r�5.8. Thus, switching from the semiclassical
approximation to the linearized one around r�5.85 allows
one to obtain a very good approximation of the density in all
points.

B. Billiard systems

In billiards with reflecting walls, the above linearization is
not possible since the slope of the potential is always infinite
at the classical turning points. The amplitude of the primitive
+ orbit can in such systems be regularized by using the fol-
lowing uniform approximation of the Green’s function for
short times �31,50�

Gscl
�un��E,r,r�� =

m

i��2��D/2	
�
� S

p�p��
det

�p�

�r��
�1/2

HD/2−1
�1� �S/�

− �/2� , �94�

where H�
�1��x� is the Hankel function of the first kind. To

evaluate the corresponding uniform approximation for the
particle density, we have to take the imaginary part of Eq.
�94� and perform the integration over the energy. This last
step is not easily done analytically in general, since H�

�1��x� is
not a simple oscillatory function of the energy. In the follow-
ing, we give results for the contributions to the particle den-
sity ��r� in two special cases. Unfortunately, we have not
been able to derive the corresponding contributions to the
kinetic-energy densities.

1. Arbitrary 2D billiard

For billiards in D=2 dimensions with arbitrary bound-
aries, the uniform contribution to the particle density be-
comes �see �50� for details�

��+
�un��d� = −

p
J1�2dp
/��
2�d�1 − d/R

, �95�

where d is the distance from the boundary and R its curva-
ture radius at the reflection point. Hereby, it is assumed that
d is small enough so that there is only one + orbit going to
the boundary and back to the given starting point. Note that

the curvature radius R is negative if the boundary is convex
at the turning point.

2. Spherical billiards in D dimensions

For spherical billiards in D dimensions with radius R, the
energy integral over Eq. �94� can also be performed and the
regularized contribution of the primitive + orbit becomes

��+
�un��r� = − �TF

�D�2���� + 1��R

r
�−1/2J��z�

z�
, �96�

where �TF
�D� is the TF density given in Eq. �15� and

� = D/2, z = 2�R − r�p
/� . �97�

For D=3, the expression �96� agrees with a result derived by
Bonche �51� using the multiple-reflection expansion of the
Green’s function introduced by Balian and Bloch �52�. For
D=1 �one-dimensional box�, the result �96� is also found
from the exact solution.

As mentioned above, the contribution �96� is responsible
for the Friedel oscillations in the densities near the boundary
r=R. It is interesting to perform the spatial integral of Eq.
�96� over the volume of the billiard. Using the formula ��53�,
6.561.14, with �=−��

�
0

� J��x�
x�

dx =
1

2�
��1/2�
��� + 1/2�

, �98�

the integral can be done in the limit p
→� �i.e., for large
particle numbers� and the asymptotically leading term yields
the following contribution to the particle number:

�NS � −
1

2D/2�D−1

��D/2�
��D�

p

D−1SD, �99�

where SD is the hypersurface of the D-dimensional sphere

SD =
2D/2

��D/2�
RD−1. �100�

We note that Eq. �99� corresponds precisely to the surface
term in the Weyl expansion �54� of the particle number N.
The Fermi energy 
TF in Eq. �15� hereby has to be replaced
by the corresponding quantity 
Weyl obtained by integrating
the Weyl-expanded density of states to the particle number
N. The role of the + orbit in contributing the surface term to
the Weyl expansion of the density of states has been demon-
strated by Zheng �55� for arbitrary billiards in D=2 dimen-
sions.

V. GENERAL RESULTS FOR FINITE FERMION SYSTEMS

After having presented our semiclassical theory for spatial
density oscillations and tested it in various model potentials,
we shall now discuss some of its results in the general con-
text of finite fermion systems. Besides the trapped fermionic
gases �1� mentioned already in Sec. I, we have in mind also
self-bound molecular systems with local pseudopotentials,
such as clusters of alkali metals �56�, treated in the mean-
field approach of DFT with the local-density approximation
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FIG. 12. Total particle density for the 3D IHO with N=3080
particles �Ms=20� �units �=m=�=1�. �Solid lines� Exact result.
�Crosses� Semiclassical result for ���r� in Eq. �68�, summed up to
kmax=15, plus �ETF�r�. �Dashed line� Uniform linearized approxi-
mation �92� from �28� with argument z̃
 in Eq. �93�.
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�LDA�, for which the KS potential is local �16�.

A. Local virial theorem

One of our central results was given in Eq. �49� which we
repeat for the present discussion

���r� � �
̃ − V�r�����r� . �101�

We call it LVT because it connects the oscillating parts of the
kinetic and potential-energy densities locally at any given
point r. While the well-known virial theorem relates, both
classically and quantum mechanically, integrated �i.e., aver-
aged� kinetic and potential energies to each other, the LVT in
Eq. �101� does this locally at any point r. We recall that

hereby the Fermi energy 
̃ of the averaged system is defined
by Eq. �46�.

Since no particular assumptions need be made �57� to
derive Eq. �101� semiclassically from the basic Eqs. �40� and
�41�, the LVT holds for arbitrary local potentials and hence
also for systems of interacting fermions in the mean-field
approximation given by the DFT-LDA-KS approach. This is
in itself an interesting basic result. It may also be of practical
interest because it allows one to determine kinetic-energy
densities from the knowledge of particle densities that in
general are easier to measure experimentally. We leave it as a
challenge to the condensed-matter community, in particular
those working with trapped ultracold fermionic atoms, to
verify the LVT experimentally.

Other forms of local virial theorems have been derived in
�10� from the exact quantum-mechanical densities of isotro-
pic harmonic oscillators in arbitrary dimensions. A
Schrödinger-like �integro-� differential equation for the par-
ticle density ��r� has also been derived in �10�. It would lead
beyond the scope of the present paper to discuss these results
and their generalization to arbitrary local potentials based
upon our semiclassical theory. This will be done in a forth-
coming publication �28�, where we also give exact expres-
sions for spatial densities in linear potentials of which we
already have made use in Sec. IV.

B. Extended validity of the TF kinetic-energy functional

Presently, we discuss the direct functional relation �18�
between the particle and kinetic-energy densities obtained in
the Thomas-Fermi model. While Eq. �18� is exact only when
applied to the TF expressions �15� and �17� of the �smooth�
densities, we shall now show that a semiclassically approxi-
mate relation holds also between the oscillating exact densi-
ties

��r� � �TF���r�� . �102�

Equation �102� states that the TF relation �18� holds approxi-
mately, for arbitrary local potentials V�r�, also for the exact
quantum-mechanical densities including their quantum oscil-
lations. This had been observed numerically already earlier
�58�, but without understanding of the reason for its validity.

The proof of Eq. �102� is actually very easy, having the
LVT �101� at hand. Inserting ��r�=�TF�r�+���r� into Eq.
�17� and Taylor expanding around �TF�r�, we obtain

�TF���r�� = �TF��TF�r�� +�d�TF���
d�

�
�TF�r�

���r� + O�����2� .

�103�

Using the obvious identity �TF��TF�r��=�TF�r� and the fact

that d�TF��TF�r�� /d�TF�r�= �
̃−V�r��, we see immediately
with Eq. �101� that, to first order in the oscillating parts, we
have indeed the relation

�TF���r�� � �TF�r� + ���r� = ��r� . �104�

We stress that, although the TF expression for all three
kinetic-energy densities ��r�, �1�r�, and ��r� is the same �cf.
Eq. �16��, the relation �102� holds only for ��r�. The reason
is that the LVT also only holds for this kinetic-energy den-
sity, as discussed explicitly in the previous sections.

In Figs. 13 and 14, we present numerical tests of the re-
lation �102� for the two-dimensional coupled quartic oscilla-
tor �50�, which represents a classically chaotic system, with
two different particle numbers. An example for the three-
dimensional spherical billiard, which is a good approxima-
tion for the self-consistent mean field of very large alkali-
metal clusters �18�, is shown in Fig. 15. We see that in all
cases, the relation �102� between the exact quantum-
mechanical densities ��r� and ��r� is extremely well ful-
filled; only close to the classical turning points, where the
LVT �101� does not hold, do we see a slight deviation. Ob-
viously, the terms of order O�����2�, neglected in the above
derivation, play practically no significant role in the interior
of the systems—even for moderate particle numbers N as
seen in Fig. 14 or in the examples given in Ref. �58� �and
reproduced in �4��.
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FIG. 13. �Color online� TF functional relation �102� for the
same system as in Fig. 2 �N=632 particles�. Cuts along the diagonal
x=y. Solid �black� line is the left-hand side and dashed �red� line is
the right-hand side of Eq. �102�.
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This result might come as a surprise, since it is well
known from the ETF model that for smooth densities, the
gradient corrections to the functional �TF��� do play an im-
portant role for obtaining the correct average kinetic energy.
�For three-dimensional systems, the first of them is the fa-
mous Weizsäcker correction �59�.� Examples for this are
given in chapter 4.4 of �26�. However, if gradient corrections
up to a given order were consistently added to Eq. �102� and
used with the exact density ��r�, the agreement seen in the
above figures would be completely spoiled.

VI. SUMMARY AND CONCLUDING REMARKS

We have presented a semiclassical theory, initiated in
�19�, for the oscillating parts of the spatial densities in terms
of closed NPOs, while the smooth parts of the densities are
given by the �extended� TF theory. Our Eqs. �40�–�42� are
the analogs of the semiclassical trace formula �36� for the
density of states in terms of periodic orbits.

For spherical systems, two kinds of oscillations in the
spatial densities can be separated, as is implied in Eqs.
�23�–�26�: regular, short-ranged ones �denoted by the symbol
�r� that we can attribute to the librating NPOs in the radial
direction and irregular, long-ranged ones �denoted by �irr�
that are due to nonradial NPOs and therefore only exist in
D�1 dimensions. The simple nature of the radial NPOs
leads immediately to a number of relations between the regu-
lar parts of the oscillations, such as Eqs. �60� and �63� or the
universal form �65� for �r��r� valid near r=0. It also explains
that the kinetic-energy density ��r� defined in Eq. �6� has no
rapid regular oscillations, as implied in Eq. �26�, but is
smooth for all one-dimensional systems, as well as for iso-
tropic harmonic oscillators �10� and linear potentials �28� in
arbitrary D dimensions, since these contain no nonradial
NPOs.

In spherical systems, the semiclassical expansion in terms
of NPOs is expected to work best for filled “main shells”
where the total energy has a pronounced local minimum.
This is also discussed in Ref. �21� on the two-dimensional
circular billiard, for which a complete classification of all
NPOs �in addition to the periodic orbits� has been made and
the semiclassical theory for the spatial density oscillations

has been studied analytically. The semiclassical approxima-
tion for the density oscillations is, indeed, found there to
work best for the closed-shell systems with filled main
shells. But even for “midshells” systems with half-filled
main shells and for most intermediate systems, the agree-
ment of the semiclassical densities with the quantum-
mechanical ones has turned out in �21� to be very satisfac-
tory.

Based on the semiclassical theory, we were able to gen-
eralize the LVT given in Eqs. �49� and �101�, which had
earlier been derived from exact results for isotropic harmonic
oscillators �10� to arbitrary local potentials V�r�. We empha-
size that the LVT is valid �semiclassically� also for an inter-
acting N-fermion system bound by the self-consistent Kohn-
Sham potential obtained within the framework of DFT and
might be verified experimentally in finite fermionic systems.
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APPENDIX: INCLUSION OF FINITE TEMPERATURE IN
THE SEMICLASSICAL THEORY

In this appendix, we give a short sketch of how to include
finite temperatures in the semiclassical formalism. Exten-
sions of semiclassical trace formulas to finite temperatures
have been used already long ago in the context of nuclear
physics �60� and more recently in mesoscopic physics �47�.
We shall present here a derivation by means of a suitable
folding function, which has proved useful also in the corre-
sponding microscopic theory �61�.

For a grand-canonical ensemble of fermions embedded in
a heat bath with fixed temperature, the variational energy is
the so-called grand potential " defined by �62�

" = �Ĥ� − TS − 
�N̂� , �A1�

where Ĥ and N̂ are the Hamilton and particle number opera-
tors, respectively, T is the temperature in energy units �i.e.,
we put the Boltzmann constant kB equal to unity�, S is the
entropy, and 
 the chemical potential. Note that both energy
and particle number are conserved only on the average. For
noninteracting particles, we can write the Helmholtz free en-
ergy F as

F = �Ĥ� − TS = 2	
n

En�n − TS , �A2�

where En is the energy spectrum of Ĥ and �n are the Fermi
occupation numbers

�n =
1

1 + exp�En − 


T
 , �A3�

and the entropy is given by
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FIG. 15. Test of the TF functional relation �102� for N
=100 068 particles in the three-dimensional spherical billiard �lines
as in Fig. 14, units �2 /2m=R=1; both densities divided by N5/3�.
Note that in the vertical direction of the figure, only a very small
excerpt around the bulk value is displayed.
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S = − 2	
n

��n log �n + �1 − �n�log�1 − �n�� . �A4�

The chemical potential 
 is determined by fixing the average
particle number

N = �N̂� = 2	
n

�n. �A5�

It can be shown �61� that the above quantities N, F, and S
may be expressed in terms of a convoluted finite-temperature
level density gT�E� as

F = 2�
−�




EgT�E�dE . �A6�

The function gT�E� is defined by a convolution of the “cold”
�T=0� density of states �13�

gT�E� = �
−�

�

g�E��fT�E − E��dE� = 	
n

fT�E − En� ,

�A7�

whereby the folding function fT�E� is given as

fT�E� =
1

4T cosh2�E/2T�
. �A8�

Note that all sums in Eqs. �A2�–�A8� run over the complete

�infinite� spectrum of the Hamiltonian Ĥ. It is now easily
seen that

N = 2�
−�




gT�E�dE . �A9�

To show that the integral �A6� gives, indeed, the correct free
energy �A2� including the “heat energy,” −TS needs some
algebraic manipulations. From F, the entropy S can always
be gained by the canonical relation

S = −
�F

�T
. �A10�

The same convolution can now be applied also to the
semiclassical trace formula �36� for the oscillating part of the
density of states which we rewrite as

�g�E� � Re	
PO

APO�E�exp� i

�
SPO�E� − i�PO� . �A11�

The oscillating part �gT�E� of the finite-temperature level
density is obtained by the convolution of Eq. �A11� with the
function fT�E� as in Eq. �A7�. In the spirit of the stationary-
phase approximation, we take the slowly varying amplitude
APO�E� outside of the integration and approximate the action
in the phase by

SPO�E�� � SPO�E� + �E� − E�TPO�E� , �A12�

so that the result becomes a modified trace formula

�gT�E� � Re	
PO

APO�E� f̃ T�TPO�E��exp� i

�
SPO�E� − i�PO� ,

�A13�

where

TPO�E� = TPO�E�/� �A14�

and the temperature modulation factor f̃ T is given by the
Fourier transform of the convolution function fT,

f̃ T�T� = �
−�

�

fT���eiT�d� . �A15�

The Fourier transform of the function �A8� is known so that

f̃ T�T� =
TT

sinh�TT�
. �A16�

The “hot” trace formula �A13� with the modulation factor
�A16� has been obtained in �47,60�.

For the spatial densities, we can proceed exactly in the
same way. For the particle density, e.g., the microscopic ex-
pression �2� is replaced by

�T�r� = 2	
n


�n�r�
2�n, �A17�

where the sum again runs over the complete spectrum. Start-
ing from the semiclassical expression �40� for ���r� at T=0,
we rewrite it as

��0�
̃,r� � Re 	
NPO

ANPO�
̃,r�exp�i��
̃,r�� , �A18�

where the amplitude ANPO collects all the prefactors of the
phase in Eq. �40�. The finite-T expression is given by the
convolution integral

��T�
̃,r� � �
−�


̃

��0�
̃ − E,r�fT�E�dE . �A19�

Expanding the phase under the integral as above, we arrive at

��T�
̃,r� � Re 	
NPO

ANPO�
̃,r� f̃ T�TNPO�
̃,r��exp�i��
̃,r�� ,

�A20�

where TNPO=TNPO�
̃ ,r� /� is the period of the NPO in units
of �. The corresponding expressions for the other spatial
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densities are obvious.
For the smooth parts of the densities, we recall that the

�E�TF theory at T�0 is well known and refer to chapter
4.4.3 of �26� for the main results and relevant literature.

Other types of correlations can be included in the semi-
classical theory in the same way, as soon as a suitable folding
fcorr�E� function corresponding to fT�E� in Eq. �A8� and its
Fourier transform are known �see, e.g., Ref. �63��.
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